Publications

Peer-Reviewed Publications

2025

  1. AdaTS: Learning Adaptive Time Series Representations via Dynamic Soft Contrasts.

    Kara, D., Kimura, T., Li, J., He, B., Chen, Y., Hu, Y., Zhao, H., Liu, S., & Abdelzaher, T. In Proc. Advances in Neural Information Processing Systems (NeurIPS 2025).

  2. DiffPhys: Differential Physics Augmentations for Enhanced Representations.

    Kara, D., Kimura, T., Sun, D., Li, J., Chen, Y., Hu, Y., Zhao, H., Bhattacharyya, J., & Abdelzaher, T. In Proc. 34th International Conference on Computer Communications and Networks (ICCCN), Tokyo, Japan.

  3. A Novel Physics-Guided Contrastive Learning Strategy for Seismic Signal Analysis.

    Kara, D., Bhattacharyya, J., & Abdelzaher, T. 2025 Military Sensing Symposium Joint (BAMS and NSSDF) Conference. (Conference Presentation)

  4. InfoMAE: Pairing-Efficient Cross-Modal Alignment with Informational Masked Autoencoders for IoT Signals.

    Kimura, T., Li, X., Hanna, O., Chen, Y., Chen, Y., Kara, D., Wang, T., Li, J., Ouyang, X., Liu, S., Srivastava, M., Diggavi, S., & Abdelzaher, T. In Proc. ACM TheWebConference (WWW), Sydney, Australia.

  5. DynaGen: Conditional Diffusion Models for Enhancing Acoustic and Seismic-Based Vehicle Detection.

    Wang, T., Li, J., Chen, Y., Sun, D., Wang, R., Kara, D., & Abdelzaher, T. In Proc. IEEE Conference on Computer Communications (Infocom), London, UK.

  6. OpenMAE: Efficient Masked Autoencoder for Vibration Sensing with Open-Domain Data Enrichment.

    Hu, C., Chen, Y., Kara, D., Liu, S., Abdelzaher, T., Wu, F., & Chen, G. In Proc. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (ACM IMWUT), also presented in UbiComp, Espoo, Finland.

  7. On Network-Efficient Multimodal Multi-Vantage Foundation Models for Distributed Sensing.

    Wang, T., Chen, Y., Zhao, H., Lyu, Y., Li, J., Kimura, T., Hu, Y., Kara, D., Wigness, M., Twigg, J., & Abdelzaher, T. In Proc. 22nd IEEE International Conference on Mobile Ad-Hoc and Smart Systems (IEEE MASS), Chicago, IL.

  8. The bottlenecks of AI: Challenges for Embedded and Real-Time Research in a Data-centric Age.

    Abdelzaher, T., Hu, Y., Kara, D., Kimura, T., Misra, A., Ramani, V., Tardieu, O., Wang, T., Wigness, M., & Youssef, A. Real-Time Systems Journal, Volume 61, Issue 2.

  9. The Irrational LLM: Implementing Cognitive Agents with Weighted Retrieval-Augmented Generation.

    Sun, D., Lyu, Y., Li, J., Liu, X., Kara, D., Lebiere, C., & Abdelzaher, T. In Proc. 34th International Conference on Computer Communications and Networks (ICCCN), Tokyo, Japan.

  10. Perturbation-based Graph Active Learning for Semi-Supervised Belief Representation Learning.

    Sun, D., Li, J., Liu, X., Lyu, Y., Zhao, H., Kara, D., & Abdelzaher, T. In Proc. 34th International Conference on Computer Communications and Networks (ICCCN), Tokyo, Japan.

  11. Towards Acies-OS 2.0: A Middleware Architecture for Adaptive Optimization of AIoT Applications.

    Li, J., Weerakoon, D., Kimura, T., Kara, D., Chen, Y., Wang, T., Hu, Y., Misra, A., Wu, H., Abdelzaher, T., & Misra, A. In Proc. IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT), Osaka, Japan.

  12. Agentic LLM-Assisted Edge AI for CPS/IoT Applications.

    Li, J., Wu, H., Zhao, H., Kimura, T., Kara, D., Wang, T., Chen, Y., Wang, T., Hu, Y., Misra, A., & Abdelzaher, T. IEEE International Conference on Cognitive Machine Intelligence (IEEE CogMI), Pittsburgh, PA.

  13. RestoreML: Practical Unsupervised Tuning of Deployed Intelligent IoT Systems.

    Li, J., Chen, Y., Wang, R., Kimura, T., Wang, T., Lyu, Y., Zhao, H., Sun, B., Wu, S., Hu, Y., Kara, D., Tian, B., Nahrstedt, K., Diggavi, S., Kim, J. H., Kimberly, G., Wang, G., Wigness, M., & Abdelzaher, T. In Proc. DCoSS-IoT, Lucca, Italy.

2024

  1. FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing.

    Kara, D., Kimura, T., Liu, S., Li, J., Liu, D., Wang, T., Wang, R., & Abdelzaher, T. In Proc. ACM Web Conference 2024 (WWW 2024), Singapore.

  2. PhyMask: An Adaptive Masking Paradigm for Efficient Self-Supervised Learning in IoT.

    Kara, D., Kimura, T., Chen, Y., Li, J., Wang, R., Chen, Y., Kaplan, L., Bhattacharyya, J., & Abdelzaher, T. In Proc. 22nd ACM Conference on Embedded Networked Sensor Systems (SenSys 2024).

  3. Integrating Physical Principles with Self-Supervised Learning for Robust Vehicle Classification in Diverse Environments.

    Kara, D., Bhattacharyya, J., Goldman, G., & Abdelzaher, T. AGU Fall Meeting Abstracts 2024, IN43A-2256. (Conference Presentation)

  4. Fine-grained Control of Generative Data Augmentation in IoT Sensing.

    Wang, T., Yang, Q., Wang, R., Sun, D., Li, J., Chen, Y., Hu, Y., Yang, C., Kimura, T., Kara, D., & Abdelzaher, T. In Proc. Advances in Neural Information Processing Systems (NeurIPS 2024).

  5. VibroFM: Towards Micro Foundation Models for Robust Multimodal IoT Sensing.

    Kimura, T., Li, J., Wang, T., Kara, D., Wigness, M., Bhattacharyya, J., Srivatsa, M. B., Liu, S., Diggavi, S., & Abdelzaher, T. In Proc. IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS 2024).

  6. MetaHKG: Meta Hyperbolic Learning for Few-shot Temporal Reasoning.

    Wang, R., Zhang, Y., Li, J., Liu, S., Sun, D., Wang, T., Wang, T., Chen, Y., Kara, D., & Abdelzaher, T. In Proc. 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC.

  7. Acies-OS: A Content-Centric Platform for Edge AI Twinning and Orchestration.

    Li, J., Chen, Y., Kimura, T., Wang, T., Kara, D., Hu, Y., Hanafy, W. A., & Abdelzaher, T. In Proc. 33rd International Conference on Computer Communications and Networks (ICCCN), Big Island, HI.

  8. The Case for Micro Foundation Models to Support Robust Edge Intelligence.

    Kimura, T., Chen, Y., Kara, D., Li, J., Wang, T., Wang, R., Bhattacharyya, J., Kim, J., Shenoy, P., Srivastava, M., Wigness, M., & Abdelzaher, T. In Proc. 10th IEEE International Conference on Collaboration and Internet Computing (IEEE CIC), Washington, DC.

  9. Data Augmentation for Human Activity Recognition via Condition Space Interpolation within a Generative Model.

    Wang, T., Chen, Y., Yang, Q., Sun, D., Wang, R., Li, J., Kara, D., & Abdelzaher, T. In Proc. 33rd International Conference on Computer Communications and Networks (ICCCN), Big Island, HI.

  10. On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study.

    Kimura, T., Li, J., Wang, T., Kara, D., Chen, Y., Hu, Y., Wang, R., Wigness, M., Bhattacharyya, J., Srivatsa, M., Liu, S., Diggavi, S., & Abdelzaher, T. In Proc. Workshop on Foundation Models for System Applications (FM-Sys).

2023

  1. SudokuSens: Enhancing Deep Learning Robustness for IoT Sensing Applications using a Generative Approach.

    Wang, T., Li, J., Wang, R., Kara, D., Liu, S., Wertheimer, D., Martin, A., Ganti, R., Srivatsa, M., & Abdelzaher, T. In Proc. 21st ACM Conference on Embedded Networked Sensor Systems (SenSys 2023).

  2. TwinSync: A Digital Twin Synchronization Protocol for Bandwidth-limited IoT Applications.

    Kalasapura, D., Li, J., Liu, S., Chen, Y., Wang, R., Kara, D., & Abdelzaher, T. In Proc. 32nd International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI.

2022

  1. The Methodological Pitfall of Dataset-Driven Research on Deep Learning: An IoT Example.

    Wang, T., Kara, D., Li, J., Liu, S., Abdelzaher, T., & Jalaian, B. MILCOM 2022 IEEE Military Communications Conference.

  2. Insights on Using Deep Learning to Spoof Inertial Measurement Units for Stealthy Attacks on UAVs.

    Kim, K. H., Kara, D., Paruchuri, V., Mohan, S., Kimberly, G., Osipychev, D., & Pajic, M. MILCOM 2022 IEEE Military Communications Conference.

Preprints and Under Review

  1. Requiem for a Drone: A Machine-Learning Based Framework for Stealthy Attacks Against Unmanned Autonomous Vehicles.

    Kim, K. H., Kara, D., Paruchuri, V., Mohan, S., Kimberly, G., & Kim, J. arXiv preprint arXiv:2407.15003.

  2. OVERTON: A Misbehavior Detection and Trust Framework for Vehicular (V2X) Networks.

    Kara, D., Kim, K. H., Mohan, S., Hasan, M., Shimizu, T., & Lu, H. (Target: USENIX Security Symposium 2025).

  3. TRANSPROP: AI-based Propensity Scoring Framework Utilizing Transactional Data Stream.

    Kara, D., Akyuz, B., & Arslan, S. (Preprint, Target: Proceedings of the AAAI Conference on Artificial Intelligence).